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Abstract The paper will present an application of Voronoi diagram to improve power

distribution efficiency by delimiting geographically the service scope of each power plant in

the U.S. A weighted 2D Voronoi diagram will be constructed based on factors such as the

capacity (the maximum electric output a power plant can produce) and the location of the

power plants. Delimiting an appropriate service scope of each power plant is crucial for

energy efficiency, because the longer the distance of transmission, the higher the energy loss

would be. In the end, Voronoi diagrams will be constructed and visualized with the

idealized service scope of each power plant.
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1 Introduction

Electricity distribution and transmission efficiency has been a crucial consideration when con-

structing the electricity delivery system. A main factor that contributes to the inefficiency

is energy loss during long distance transmission[Mar19]. In the United States, modern elec-

tricity transmission systems have driven toward larger scale and more centralized electricity

generation utilities, in contrast to local, small electric utilities that were dominant before

the early 20th century[Age21]. That is, the electricity that flows to the consumer is usually

generated from a distant power station and travels along the long transmission lines across

cities, even states[Age21]. Although the centralized layout has increased supply reliability,

the drawback is also salient – the transmission cost could be up to 30% more than the dis-

tributed layout[Mar19]. “Line loss”, the loss caused by the resistance when the electricity

flows through the cable, contributes to the main energy loss, and the loss increases propor-

tionally with the transmission distance, which can be up to 10%−20% of the total electricity

transmitted[Ele21].

Therefore, an ideal electricity distribution model should allocate each demand point to

the nearest power generator possible without exceeding each generator’s maximum energy

output, the capacity of the generator. To construct such a distribution model, both the

“traditional”, unweighted Voronoi Diagram (VD) and weighted VD are applied to a dataset

of over 8000 power plants in the United States, including each of their location and capacity.

By constructing VD, the territory is partitioned into regions, and each region will be the

optimal service scope of a power plant; that is, the power plant will be the main the power

source for all demand points within the region. The traditional VD can minimize transmis-

sion loss by assigning each demand point to the closest possible power point; however, it

does not consider practical factors such as the capacity of power plants, which can widely

vary from one power plant to another. The weighted VD incorporates the capacity as weight

to reduce potential short supply and avoid oversupply while still maintain VD’s property

of capturing proximity. We will further introduce VD’s properties and applications in the
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following section.

2 Background

2.1 Introduction to Voronoi Diagram

2.1.1 Voronoi Diagram and Properties

Figure 1: An example of VD creation[Kan08].

The (traditional) Voronoi Diagram (VD) is a partition of plane based on a set of points.

Those points are referred to as “sites” or “generators”. Each site has one corresponding

region called “cell”. All the points in a cell are closer to the corresponding site than to any

other site. The points that are equidistant from two sites form a Voronoi edge, and the

points that are equidistant from more than two sites are Voronoi vertices. The following is

some of the properties of a VD[DO11]:

1. All Voronoi regions are convex.

2. Voronoi cells are mutually exclusive except for boundaries.

3. The union of all Voronoi cells covers the entire plane.

4. The generator g is the nearest generator point from point p if and only if the corre-

sponding cell of g contains p.
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5. For any two adjacent Voronoi sites that shares a common edge, the sites have the same

distance to the edge.

6. The straight-line dual graph of a VD (see Figure 2) is a Delaunay triangulation, which

will be introduced in the next section.

Figure 2: The straight-line dual graph of a VD is the graph produced by connecting every
pair of Voronoi sites if they share a common Voronoi edge[DO11].

2.1.2 Delaunay Triangulation and Properties

Figure 3: (a) A point set triangulation (b) Not a triangulation[Swi21].

A triagnuation of a point set S is a subdivision of the plane determined by a maximal set

of non-crossing edges whose vertex set is S. There are exponential number of triangulations

given a point set. Delaunay triangulation (DT) is one special kind of triangulation where the

circumcircle of each triangle does not contain other points of S, known as “the empty circle

property”. Figure 4b demonstrates a non-Delanay triangulation where the circumcircle of

T1 contains the point V3.
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Figure 4: Comparison of Delaunay and non-Delaunay triangulations. (a) Delaunay triangu-
lation (b) Non-Delaunay triangulation[Res21].

Figure 5: Connecting the circumcenters whose triangles share an edge produces a VD[Con21].

An important feature of Delaunay triangulation is its duality with VD. As mentioned

in the previous section, given a VD defined on a set of sites S, the Delauany triangulation

of S can be found by connecting any two sites p, q ∈ S that share a Voronoi edge (see

Figure 2). Reversely, given a Delaunay triangulation, a VD can be found by computing

the circumcenters of all the triangles, and connecting any two circumcenters whose triangles

share an edge (see Figure 5). “The one-to-one correspondence provided by duality” suggests

that VD can be computed via Delaunay triangulation[DO11]. In section 2.2, we will further

discuss different algorithms of VD construction.

11



Figure 6: (a) Non DT has long, thin triangles (b) DT has “fat” triangles[Flo21].

Another important property of Delaunay triangulation (DT) is that it tends to avoid

“skinny” triangles, which are triangles with one or two extremely acute angles and hence

have a long, thin shape. This property makes DT more desirable in many applications. For

example, in terrain construction, DT can better capture the feature of land surfaces such as

ridges and valleys compared to other triangulations[DO11].

The generalized Delaunay triangulation is Regular triangulation, which is defined on a

set of weighted points[Boi+02]. Regular triangulation is the dual of one type of weighted

VD, the power diagram, which will be introduced in the section 4.

2.2 Algorithms for Computing Voronoi Diagrams

One way of constructing the VD is via Delaunay triangulation (DT). One computes DT

first and transforms the solution to its dual VD. A straight forward DT solution is the flip

algorithm. It starts with a random triangulation and keeps “flipping” edge, as shown in Fig-

ure 6, until all the triangles satisfy the empty circle property[DO11]. Other DT algorithms

includes Bowyer-Watson algorithm, DeWall algorithm, and Quickhull algorithm[OBS09].
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Figure 7: A point (focus) and a line (direc-
trix) defines a parabola. Any point on the
parabola is equidistant from the focus and
from the line[Shm21].

Figure 8: Static visualization of Fortune’s
algorithm[JRG11].

For direct construction of VD, there are various approaches, including the incremental

approach, the divide-and-conquer approach and Fortune’s algorithm (the sweep line algo-

rithm). Proposed by Peter Green and Robin Sibson in 1977, the incremental approach adds

one more site a time to the current diagram and forms a new cell, until all sites are included.

The time-complexity is O(n2)[DO11]. The divide-and-conquer approach recursively divides

the plane into two halves, constructs the diagram for each half, and then combines the two

diagrams together. The time complexity is O(nlogn), which is more efficient but the com-

bination step “is complex and hard to implement”[For86]. Fortune’s sweep line algorithm

has the same time complexity as the divide-and-conquer approach but a less complicated

implementation. The algorithm maintains a horizontal line sweeping from top of the plane

to the bottom, which is defined as “sweep line”. The sweep line and the each site above

it co-determine a parabola (see Figure 7). The opening of the parabola keep getting wider

when the sweep lines moves away from the site. Hence, the union of all the parabolas, called

the “beach line” keeps changing as the sweep line moves (see Figure 8). The changes on

beach line provide information on Voronoi egdes and vertices (see Figure 9). The breakpoints

on the beach line trace out the Voronoi edges. The disappearance of an parabola generates

a Voronoi vertex. When the sweeping ends, the VD is produced[For86].
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Figure 9: A demo of sweep line algorithm showing how VD (in red) is traced out by break
points[Tah06].

2.3 Applications of Voronoi Diagram

The simplicity and elegance of concept and its nature of capturing proximity has made VD

widely applied to solve various types of problems[DO11]. In particular, VD has major ap-

plications in solving proximity, similarity and coverage problems. For proximity, VD helps

to find the nearest facilities such as hospitals or post office[Tra21], and it also contributes to

solving shortest-path finding problems[Ale+13] and k-closest-neighbor problem[Kol04]. For

similarity, VD has been applied to objects matching[Das+15], categorization[SPR19] and

clustering[KRE06]. For coverage, VD has been used for facility layout planning[LSL16] and

optimization of facilities’ service scope[ZJC18].

In addition, VD has extensive application in a variety of disciplines including archaeology,

meteorology, biology, epidemiology, etc. In archaeology, VDs are often used to define the do-

main of influence of neolithic clans or hillforts[OBS09]. In biology, Voronoi tessellation helps

to model the 3D bone microstructure[Li+12], contributing to the measurement of physical

constraints of body tissues. In meteorology, VD, referred to as Thiessen polygon[Sch98], is

used to compute average areal rainfall of a catchment from discrete data collected by rain
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gauges. In epidemiology, a famous application is the 1854 London Broad Street cholera out-

break[Epi21]. A VD is constructed to accurately delineate the region where the most deaths

clustered and helps to successfully identify the source of infection[Epi21].

Moreover, various generalizations and extensions have been developed to resolve more

complex problems or better adapt to real-world situations[OBS09]. For example, the high-

order VD (or k-order VD) has more than one point that constitute of a generator[OBS09].

The k-order VD has been applied to facility location problems in terms of determining the

critical k nearest facilities[OBS09]. Another important generalization is the weighted VD.

The “traditional” VD that we have dicussed so far implicitly assumes that sites are equally

weighted. The weighted VD takes the variation in the properties and attributes of sites into

account, which could be more suitable for practical applications[FM18] such as economic

markets modeling, delivery system design, functional territories for facilities, etc.[OBS09].

3 Related Work

There is a large body of work using VD to compute spatial coverage[OBS09]. We will focus

on discussing studies that use weighted VD to solve coverage problems because this is the

approach we will be using ourselves.

Weighted VD has been commonly applied to resource allocations and facility layout de-

sign. For example, a study on determining ecosystem service scope[ZJC18] compares the

accuracy of traditional VD with the weighted VD. Since ecosystem service value is a crucial

indicator of the strength of ecosystem and varies from region to region, the weighted diagram

incorporates ecosystem service value and results in a more scientific service area delineation

than the traditional approach does. The weighted VD has also been applied in a study

of modeling water distribution networks[GK12]. The objective is to assign water demand

points to the closest water sources. Being aware of the geographical unevenness, a weighted

VD is constructed with an additive constant on obstacles and boundaries that could not
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be passed by distribution pipes. In addition, weighted VD has also been used to optimize

the layout of urban system[Xin+10] and rural settlements[Wan+20], to choose a new site for

chain stores[LSL16], etc.

Moreover, the weighted VD has also been widely applied to emergency modeling and

rescue route optimization, which usually adapts to the real-world circumstances better than

the “traditional” VD[FM18]. For example, a study in delimiting the service area of fire emer-

gency stations has the fire risk index as the weight incorporated into the distance calcula-

tion. In addition, instead of the Euclidean distance, Manhattan distance is adopted to mimic

the actual rescue routes[Yu+20]. Another study on drone delivery of EMS from hospitals

compares the traditional VD with the weighted VD that incorporates factors such as wind

magnitude and obstacles. As a result, critical amount of response time, which is the most im-

portant measurement for delivery efficiency, could be saved by using the weighted VD[FM18].

Similarly, in a study of locating distribution center of disaster supplies, a weighted VD is

applied to maximize the total coverage area of the distribution centers to produce a quick

response time and minimize human suffering[YJU12] Moreover, weighted VD also helps with

building an online map-based emergency management support system[LLT11].

Thus, from the few studies discussed above, we see that weighted VD has been widely

applied to solve coverage problems, which can compensate for variation of properties of sites

and produce more scientific results.

In this paper, we are going to apply a weighted VD on delimiting the service scope of

power plants in the United States in order to minimize the energy loss in transmission. The

weight is introduced to reflect the variation in power plant capacity. Though we have not

found any direct VD application on service scope delimitation for power plants, there is a

relevant study on applying weighted VD to determining new substation sites, substation ca-

pacity and service scope to minimize the overall annual cost[Fan+09]. The weight has been

used to reflect the variance in load distribution and capacity. The following is the major

differences between our study and theirs:
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1. We study power plants which generate electricity, whereas their focus is substations

which distribute electricity.

2. Our study determines the service scope of located power plants, whereas they deter-

mines the location of new substations and their capacities.

3. Our objective is to reduce energy loss in transmission, and theirs is to reduce the overall

substation operation cost.

To our knowledge, this is the first attempt to reduce electricity loss in transmission by

delimiting service scope for power plants. We have not found the information on the existing

service scope of power plants within the U.S., so we are not able to compare our design with

the existing service scope. We are also aware that the existing service scope may have taken

other factors such as terrain, population density into consideration, whereas our model is

idealized and simplified since it is only based on power plant location and capacity.

4 Methodology

Our goal is to generate and compare two Voronoi Diagrams. One is the traditional, un-

weighted VD. The other is the weighted VD, taking into account the difference of electricity

production capacity among power plants. We expect to see power plants of larger capacity

to have larger cells than which on the unweighted VD.

To incorporate weights into computation, weighted VD commonly uses different distance

metrics other than Euclidean distance. We will discuss in detail regarding to the types of

distance metrics and our choice for the project.

4.1 Distance Metrics and Weighting Schemes

As previously introduced in section 2.1, the Voronoi cell of a site pi consists of a set of points

x’s that are closer to pi than to any other site. In the context of traditional, unweighted VD,
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the “closeness” is usually measured by Euclidean distance, denoted as d(x, pi) = ‖x − pi‖.

However, the measure of “closeness”, or the distance metrics used to compute d(x, pi) can

vary depending on application needs. The weighting schemes of VD is the use of modification

on distance metrics to reflect the influence of weights. There are three types of weighting

schemes that seemingly cater to our needs: multiplicatively weighted VD, additively weighted

VD and the power diagram.

(a) (b)

Figure 10: VD for a set of sites with (a) no weighting (b) multiplicatively weighted[Let07].

In a multiplicatively weighted VD, the distance between a point x and a site pi is defined

as the Euclidean distance between them divided by the weight wi[OBS09]:

dmw(x, pi) =
‖x− pi‖

wi

, wi > 0 (1)

For any Voronoi site, the larger the weight it is assigned, the larger the cell it will have. For a

point on the borderline of two regions, its distance to one site is a multiple of the distance to

the other, and the ratio is determined by the weights of two sites. Conceptually, multiplica-

tive weighting is more motivated by the application. However, a multiplicatively weighted

VD often contains non-convex regions, as well as enclave and exclave regions[CAZ19]. More-

over, the diagram may have regions that are not simply connected, as Figure 12b shows.

Therefore, this approach might produce non-intuitive and impractical result in our applica-

tion.
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Figure 11: An additively weighted VD[SS06].

In an additively weighted VD, the distance between a point x and a site pi is defined as

the Euclidean distance between them subtracted by the weight wi[OBS09]:

dmw(x, pi) = ‖x− pi‖ − wi, wi > 0 (2)

Similarly, for any Voronoi site, the larger the weight it is assigned, the larger the cell it will

have. Additively weighted VD is simply connected and there is no enclave or exclave re-

gions[CAZ19]. However, its edges can be arcs of hyperbolas, which might be more challenging

for real world partitioning.

(a) VD without weighting (b) power diagram

Figure 12: Comparison of VD without weighting and power diagram[Let07].

Power diagram(PD) is in fact a variation of additively weighted VD. Its distance metric

is defined as follows[OBS09] :

dp(x, pi) =
√
‖x− pi‖2 − wi (3)
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This distance metric is also called power distance, usually defined on a set of circles. Each

site pi is inflated into a circle with radius of
√
wi. In Figure 13, for example, the power

distance between a point P and some site O is a segment PT tangent to the circle centered

at O. Though the motivation of power diagram is not as obvious[Let07], its advantage is

evident as it shares most nice properties with traditional VD – the cells are guaranteed to be

convex, simply connected and have straight-line edges[CAZ19]. Therefore, we choose power

diagram to delimit the service scope of power plants.

Figure 13: The distance metric of power diagram[Wik21].

4.2 Data Description and Preprocessing

The data used for the application is obtained from a comprehensive, open source database of

the power plants all over the world. The database is developed by World Resources Institute

(WRI) in partnership with Google Earth Outreach and multiple authoritative organizations

and it mainly draws upon trusted sources such as national governments and other official

sources, integrated with a small portion of crowdsourced data such as satellite images for

accuracy improvement[Bye+19]. More importantly, among all current existing databases

on this topic, it’s the only one “truly comprehensive and fully accessible”[Bye+19] with

all sources traceable to publicly available webpages, and is still under maintenance. The

dataset in CSV form can be accessed at https://www.kaggle.com/eshaan90/global-power-

plant-database. We adapt the latest official release from 2018.
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The dataset contains over 28,500 power plants in 164 countries, representing about 80%

of the world’s capacity[Bye+19]. The set of attributes of power plants covers identification

information (name and unique identifier), geographic information (country, longitude and

latitude in WGS84 standard), electricity generation data (generation capacity in megawatts,

actual generation for each year from 2013 to 2016, estimated annual electricity generation),

and other miscellaneous information including owner of the plant, year of operation, attri-

bution of data sources.

We leverage Python pandas library for exploratory data analysis and wrangling. Since

our study object is the power plants within the United States, we only keep the dataset

entries that are within the U.S. The processed dataset has 8119 instances with 5 attributes:

ID, name, longitude, latitude and capacity. Through the data profiling, there are no missing

data, and have reasonable range of numbers. The electrical generation capacity ranges from

1 to 6800 megawatts, the longitude ranges from -171.71 to 144.90, the latitude ranges from

13.30-71.29. All figures are within reasonable ranges.

4.3 Tools and Packages

We construct the traditional VD by using D3-Voronoi package and visualize by Google Maps

JavaScript API. D3-Voronoi is a package written in JavaScript for computing 2D-VD. We

choose D3-Voronoi because it implements Fortune’s algorithm and also has decent visualiza-

tion (e.g. supports zoom transitions)[Riv21]. The shortcoming is that the package itself does

not support constructing more complex VD, including weighted VD, but it is satisfactory

enough for constructing the traditional VD. Google Maps JavaScript API supports different

types of map creation (roadmap, satellite, hybrid, and terrain), which enables display on

web pages and mobile devices[Goo21a].

The power diagram is computed using the Computational Geometry Algorithms Library

(CGAL), which is a C++ library of robust geometry algorithms. The power diagram is pro-

duced by constructing its dual diagram, a Regular triangulation. Then, we use Processing,
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a graphical library and IDE, to visualize the diagram computed by CGAL. We use Google

Static Map API to obtain static map image as the canvas for drawing.

5 Results and Analysis

In this section, we are going to compare the service scope delimitation produced by traditional

VD and by the weighted VD (power diagram) and seek a more reasonable and scientific

solution.

5.1 Traditional Voronoi Diagram and Visualization

Figure 14: Service Scope Delimitation Visualization by Traditional VD

Gaining insight from[Shi21] on the usage of D3-Voronoi, traditional VDs are generated-

shown in Figure 14 and 15. As we can see, the territory of United States is partitioned into

small cells by the red lines, and within each cell there is one black dot, which represents a

power plant. The area covered by each cell is the optimal service scope for the power plant

in the cell.
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Figure 15: Service Scope Delimitation Visualization by Traditional VD (zoomed-in)

This approach simply “assigns” every point in the territory to the closest power plant

measured by Euclidean distance, regardless of the different attributes the power plants have

in reality. By the property of traditional VD (refer to property 5 in section 2.1.1), each edge

has the same distance to the two adjacent sites.

5.2 Power Diagram and Visualization

5.2.1 Weight Tuning

We incorporate the capacities of the power plants as weight to construct the power diagram.

The capacities of the power plants ranging from 1 to 6809 megawatts. The mean capacity is

about 711 megawatts, and the median is about 12 megawatts. Thus, the data not only has

a wide range, but is also heavily right-skewed. Therefore, we take the natural logarithm to

the capacity values and then apply the min-max normalization, and now the weight ranges

from 0 to 1 with mean = 0.32 and median = 0.28.
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5.2.2 Visualization and Comparison

We construct PD on the scope of the entire U.S. territory. Figure 16 is the zoomed-in

visualization that shows the delimitation of an area centered around the Grand Coulee Dam

(GCD) power plant, and we will focus on that area for analysis. For comparison, Figure 17

is the partition done by traditional VD in the same area. GCD is the largest power plant

in the U.S. with the largest capacity of 6,809 megawatts. Due to its large capacity, a more

reasonable delimitation should assign it a larger service scope than which delimited by the

traditional VD. Let the site of GCD be g, cell of GCD be c. Unlike the traditional VD, for

each adjacent site p of g and the corresponding edge e in between, the distance from p to e

is no longer the same as which from e to g; rather, the distance from g to e is significantly

longer than e to p. For example, as shown in Figure 16, the site of Chief Joseph power

plant has weight = 0.361 while g has weight = 1.000, and the distance from the site of

Chief Joseph to the edge between it and g is 118.89 pixels in the diagram (equivalent to

118.89 pixel *390 meters/pixel = 46,367.1 meters1), whereas the distance from g to the edge

is 123.39 pixels(equivalent to 123.39 pixel*390 meters/pixel = 48,122.1 meters). Since all

edges of the c displays the similar pattern in PD, that is, further away from g than from

the adjacent p, the area of c is larger than the corresponding cell of the traditional VD.

Generalized to the whole diagram, for any two adjacent sites, the edge in between is closer

to the one with larger weight. Since the area of a cell is determined by the distances from

the edges to the site, the sites with larger weights (compared with the adjacent sites) have

larger cells. Therefore, since power plants with larger capacities are assigned with larger

service scopes, PD produces a more reasonable service scope delimitation.

1Google Map has zoom levels from 0 (most zoomed out) to 21 with 256x256 pixels tiles[Goo21b]. Here
the diagram has zoom level = 8. Each zoom level has a conversion rate from pixel distance to the real world
distance given the latitude of the location. With the latitude of the location of GCD = 47.96N, the estimated
conversion rate is about 390 meters/pixel at zoom level = 8.[Goo21c]
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Figure 16: PD in GCD area: Chief Joseph power plant is 118.89 pixel distance away from
the edge on its right, and GCD is 123.39 pixel distance away from the edge on its left.

Figure 17: Traditional VD in GCD area: Chief Joseph power plant and GCD are both 121.14
pixel distance away from the edge between them.
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6 Summary and Future Direction

This paper applies Voronoi diagram, both the traditional and the weighted VD (power

diagram), to delimit service scopes for power plants in the U.S. to optimize transmission

efficiency. The traditional VD can optimize transmission efficiency since each demand point

is assigned to the closest power plant; however, it does not consider the huge variation in

the capacity of the power plants, which might result in short supply or oversupply in reality.

The weighted VD incorporates capacity as weight, so the service scope now is co-determined

by both location and capacity. In this way, power plants with larger capacities are likely to

have larger service scopes, so the model produced by weighted VD is more reasonable and

scientific.

However, the model is still highly idealized. Besides capacity, future work could take

more practical factors into consideration, including geographical unevenness and restrictions,

demographical variations such as population density and electricity consumption per capita,

etc.
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